Two-Dimensional Transport of Solids in Viscous Protoplanetary Disks

نویسنده

  • F. J. Ciesla
چکیده

Large-scale radial transport of solids appears to be a fundamental consequence of protoplanetary disk evolution based on the presence of high temperature minerals in comets and the outer regions of protoplanetary disks around other stars. Further, inward transport of solids from the outer regions of the solar nebula has been postulated to be the manner in which short-lived radionuclides were introduced to the terrestrial planet region and the cause of the variations in oxygen isotope ratios seen in primitive materials. Here, both outward and inward transport of solids are investigated in the context of a two-dimensional, viscously evolving protoplanetary disk. The dynamics of solids are investigated to determine how they depend on particle size and the particular stage of protoplanetary disk evolution, corresponding to different rates of mass transport. It is found that the outward flows that arise around the disk midplane of a protoplanetary disk aid in the outward transport of solids up to the size of CAIs and can increase the crystallinity fraction of silicate dust at 10 AU around a solar mass star to as much as ∼40% in the case of rapidly evolving disks, decreasing as the accretion rate onto the star slows. High velocity, inward flows along the disk surface aid in the rapid transport of solids from the outer disk to the inner disk, particularly for small dust. Despite the diffusion that occurs throughout the disk, the large-scale, meridonal flows associated with mass transport prevent complete homogenization of the disk, allowing compositional gradients to develop that vary in intensity for a timescale of one million years. The variations in the rates and the preferred direction of radial transport with height above the disk midplane thus have important implications for the dynamics and chemical evolution of primitive materials. Subject headings: ar X iv :0 81 2. 39 16 v2 [ as tr oph ] 6 J an 2 00 9

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Evolution of Protoplanetary Disks around Millisecond Pulsars: the Psr 1257 +12 System

We model the evolution of protoplanetary disks surrounding millisecond pulsars, using PSR 1257+12 as a test case. Initial conditions were chosen to correspond to initial angular momenta expected for supernova-fallback disks and disks formed from the tidal disruption of a companion star. Models were run under two models for the viscous evolution of disks: fully viscous and layered accretion disk...

متن کامل

Particle Pile-ups and Planetesimal Formation

Solid particles in protoplanetary disks that are sufficiently super-solar in metallicity overcome turbulence generated by vertical shear to gravitationally condense into planetesimals. Super-solar metallicities result if solid particles pile up as they migrate starward due to aerodynamic drag. Previous analyses of aerodynamic drift rates that account for mean flow differences between gas and pa...

متن کامل

Outward transport of high-temperature materials around the midplane of the solar nebula.

The Stardust samples collected from Comet 81P/Wild 2 indicate that large-scale mixing occurred in the solar nebula, carrying materials from the hot inner regions to cooler environments far from the Sun. Similar transport has been inferred from telescopic observations of protoplanetary disks around young stars. Models for protoplanetary disks, however, have difficulty explaining the observed lev...

متن کامل

Rayleigh Adjustment of Narrow Barriers in Protoplanetary Disks

Sharp density features in protoplanetary disks, for instance at the edge of a magnetically dead zone, have recently been proposed as effective barriers to slow down or even stop the problematically fast migration of planetary cores into their central star. Density features on a radial scale approaching the disk vertical scale height might not exist, however, since they could be Rayleigh (or mor...

متن کامل

ar X iv : a st ro - p h / 05 10 30 5 v 2 1 2 D ec 2 00 5 Hydraulic / Shock - Jumps in Protoplanetary Disks

In this paper, we describe the nonlinear outcome of spiral shocks in protoplan-etary disks. Spiral shocks, for most protoplanetary disk conditions, create a loss of vertical force balance in the post-shock region and result in rapid expansion of the gas perpendicular to the disk midplane. This expansion has characteristics similar to hydraulic jumps, which occur in incompressible fluids. We pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009